Prime order derangements in primitive permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prime order derangements in primitive permutation groups

Let G be a transitive permutation group on a finite set Ω of size at least 2. An element of G is a derangement if it has no fixed points on Ω. Let r be a prime divisor of |Ω|. We say that G is r-elusive if it does not contain a derangement of order r, and strongly r-elusive if it does not contain one of r-power order. In this note we determine the r-elusive and strongly r-elusive primitive acti...

متن کامل

Permutation groups and derangements of odd prime order

Let G be a transitive permutation group of degree n. We say that G is 2′elusive if n is divisible by an odd prime, but G does not contain a derangement of odd prime order. In this paper we study the structure of quasiprimitive and biquasiprimitive 2′-elusive permutation groups, extending earlier work of Giudici and Xu on elusive groups. As an application, we use our results to investigate autom...

متن کامل

Derangements in Simple and Primitive Groups

We investigate the proportion of fixed point free permutations (derangements) in finite transitive permutation groups. This article is the first in a series where we prove a conjecture of Shalev that the proportion of such elements is bounded away from zero for a simple finite group. In fact, there are much stronger results. This article focuses on finite Chevalley groups of bounded rank. We al...

متن کامل

Derangements and p-elements in permutation groups

2. (Jordan) A transitive permutation group of degree n > 1 contains a derangement. In fact (Cameron and Cohen) the proportion of derangements in a transitive group G is at least 1/n. Equality holds if and only if G is sharply 2transitive, and hence is the affine group {x 7→ ax + b : a, b ∈ F, a 6= 0} over a nearfield F. The finite nearfields were determined by Zassenhaus. They all have prime po...

متن کامل

Distinguishing Primitive Permutation Groups

Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.06.017